Вы здесь

Система выпуска лодочных моторов

Система выпуска лодочных моторов

17.12.2008 Автор: 0 12837
Facebook Twitter Google+ Pinterest

система выпуска лодочного мотора

Рис. 1. Выпускная система подвесного мотора.

  1. выпускные окна;
  2. полость блока цилиндров;
  3. свободный выпуск;
  4. полость в дейдвуде;
  5. канал вывода газов в воду.

Выпускная система двухтактного двигателя подвесного лодочного мотора отличается от систем выпуска мотоциклетных и стационарных двухтактных двигателей. Это вызвано своеобразием компоновки лодочных моторов, в которых (за исключением гоночных моделей) вывод отработавших газов осуществляется не в воздух, а под воду: глушитель как отдельный агрегат, обязательный для мотоциклетных и стационарных двигателей, отсутствует.

В двухтактном карбюраторном двигателе система выпуска (рис. 1) имеет особенно важное значение, поскольку подбор размеров и конфигурации ее отдельных элементов и времени открытия выпускного окна оказывает существенное влияние на технико-экономические показатели.

Газораспределение в таком двигателе, как известно, осуществляется самим поршнем, открывающим выпускное, а затем продувочное окно при ходе вниз и закрывающим их при ходе вверх. Естественно, что на диаграмме газораспределения (рис.2), фазы открытия и закрытия этих окон будут строго симметричны относительно мертвых точек. При подборе величины фаз именно их симметричность создает определенные трудности.

Продувочное окно всегда открывается позднее выпускного: эта разница во времени на диаграмме изображается как угол ф1, называемый углом предварения выпуска. За этот период происходит свободный выпуск газов из цилиндра, давление в нем резко падает. К моменту открытия продувочных окон давление в цилиндре должно оказаться ниже давления в картере - иначе произойдет эаброс отработавших газов в картер. Явление это нежелательно, так как оно приводит к загрязнению свежей смеси отработавшими газами и повышению температуры в картере. Для улучшения очистки цилиндра перед началом продувки целесообразно увеличить угол ф1, однако полностью устранить опасность заброса оказывается трудно, так как соответствующее увеличение периода предварения выпуска приводит или к уменьшению периода продувки при неизменной фазе выпуска, или к увеличению фазы выпуска при неизменной фазе продувки, т.е. уже к значительной потере полезного объема цилиндра.

С момента закрытия поршнем продувочного окна начинается процесс сжатия, но до того, как будет перекрыто выпускное окно, успевает произойти потеря некоторой части свежей рабочей смеси - унос ее в выпускное окно. Для уменьшения уноса смеси после окончания продувки было бы желательно уменьшить разницу во времени закрытия окон (на диаграмме это угол запаздывания выпуска ф2), однако, как мы уже знаем, фазы симметричны: угол запаздывания выпуска, который мы хотели бы уменьшить, равен углу предварения выпуска, который мы хотели бы увеличить.

При поршневом управлении газораспределением невозможно изменить один из этих углов, оставив другой без изменения. Попытки же создания двигателей с несимметричными фазами наталкиваются на значительные конструктивные трудности. Конструкторам приходится применять какие-то компромиссные решения вопросов улучшения очистки цилиндра и уменьшения потерь свежей смеси.

Теория и практика показывают, что для улучшения процессов очистки и наполнения могут быть использованы газодинамические явления, происходящие в самих газовых системах двигателя. На ход процессов в цилиндре оказывает влияние настройка всех элементов газового тракта двигателя: системы впуска, продувочных каналов, цилиндра, выпускной системы. (Поясним, что в принципе под настройкой понимается нахождение таких геометрических величин той или иной системы, которые обеспечивают получение максимального значения какого-либо из показателей двигателя, например крутящего момента на заданном скоростном режиме.)

Многочисленные исследования направлены, в частности, на отработку так называемой настроенной системы выпуска, позволяющей добиться повышения технико-экономических параметров двигателя без чрезмерного усложнения конструкции.

Диаграмма газораспределения двухтактного двигателя

Рис. 2. Диаграмма газораспределения двухтактного двигателя.

  1. фаза впуска;
  2. фаза продувки;
  3. фаза выпуска;
  4. ф1 - угол предварения выпуска;
  5. ф2 - угол запаздывания выпуска.

Понятно, что любая выпускная труба, особенно, если она имеет небольшое проходное сечение и большую длину, замедляет скорость выхода отработавших газов, создавая сопротивление. (С этой точки зрения наиболее эффективен простейший вариант - сделать проходное сечение выпускного окна как можно больше и вообще отказаться от выпускной трубы, однако такой путь практически неосуществим.) Исследованиями последних лет установлено, что применение в двухтактном двигателе специально подобранной - настроенной выпускной трубы дает заметные преимущества, перекрывающие все аэродинамические потери.

Настройка с использованием резонансных явлений позволяет уменьшить давление в районе выпускного окна до величины ниже атмосферного. Рассмотрим сущность этого эффекта.

Идеализированная диаграмма изменения давления в зоне выпускных окон.

Рис. 3. Идеализированная диаграмма изменения давления p (кгс/кв.см.) в зоне выпускных окон.

Истечение отработавших газов из цилиндра начинается при сравнительно высоком давлении, что вызывает возникновение в выпускной системе (и в цилиндре) интенсивных волн давления. В первый же момент выпуска газов в цилиндре образуется разрежение, а в выпускной системе - волна избыточного давления (сжатия). Если к выпускному патрубку цилиндра присоединена прямая труба, заканчивающаяся отверстием меньшего диаметра, то волна давления, дойдя до конца трубы, отражается от него и начинает двигаться в обратном направлении. Настройка и заключается в том, чтобы при наложении отраженной волны на волну, идущую из цилиндра, пики давлений и разрежений совпадали.

В результате разрежение у выпускного окна цилиндра увеличивается, что улучшает и очистку цилиндра от отработавших газов, и зарядку его свежей смесью из кривошипной камеры. Мы уже говорили об уносе - выходе части заряда свежей смеси через выпускное окно в трубу. Отраженная волна давления из настроенной выпускной трубы может втолкнуть эту часть заряда обратно в цилиндр, если, конечно, выпускное окно в этот момент еще остается открытым.

Все эти процессы можно проследить на идеализированной диаграмме изменения давления Р у выпускных окон, построенной на основании многочисленных экспериментов (рис. 3). На участке 1-2, т.е. начиная от момента открытия выпускного окна до момента открытия продувочного окна, возникает пик давления. На участке 2-3-4 наблюдается зона разрежения. Разрежение в зоне выпускных окон способствует отсасыванию отработавших газов из цилиндра и его наполнению смесью за счет увеличения перепада давления в кривошипной камере и цилиндре. Импульс давления в конце продувки (участок 4-5) образует волну, обеспечивающую дозарядку цилиндра за счет возврата свежей смеси, попавшей в выпускную трубу.

К настоящему времени тщательно исследованы самые различные выпускные системы (рис. 4) с трубами постоянного и переменного сечения, открытыми или имеющими заднюю стенку. Такие настроенные выпускные системы широко применяются на двигателях мотоциклов и гоночных подвесных лодочных моторов. На серийном потребительском подвесном моторе выпускную трубу оптимальной длины и формы разместить трудно, поэтому применяются преимущественно короткие выпускные системы, не имеющие задней стенки.

открытая и закрытая система выпускных систем двухтактных двигателей

Рис. 4. Некоторые типы выпускных систем двухтактных двигателей:

а - открытая система;

б - закрытая система.

Примером реальной конструкции может служить выпускная система, испытанная при доводке подвесного лодочного мотора "Ветерок-14" (рис. 5). Система, состоящая из конусной выпускной трубы, окруженной замкнутым объемом дейдвуда, обеспечивает хорошее качество очистки цилиндра, но настройка ее для эффективного использования явления резонанса в выпускном тракте практически оказывается очень сложной из-за большой сложности происходящих в ней явлений.

Схема выпускной системы подвесного мотора

Рис. 5. Схема выпускной системы
подвесного мотора.

Поскольку необходимо учитывать значительное количество эмпирических коэффициентов, устанавливаемых опытным путем, расчет настройки при разработке новых двигателей обычно не производят, а оптимальные размеры элементов системы определяют экспериментально на тормозном стенде. Правильно поставленная серия экспериментов позволяет значительно быстрее и точнее, чем расчетным путем, определить все необходимые характеристики конкретной конструкции подвесного мотора.

Примером такого рода экспериментов могут служить исследования по уточнению длины конусного глушителя без задней стенки, имеющего диаметр входного отверстия 40 мм и выходного 100 мм.

Было установлено (рис. 6), что на средних угловых скоростях выгоднее более длинная труба, чем на больших; что максимальная величина среднего индикаторного давления уменьшается с укорочением глушителя; что укорочение глушителя обеспечивает более плавный ход кривых среднего индикаторного давления и удельного индикаторного расхода топлива, способствует лучшему наполнению кривошипной камеры.

Эффективность настройки выпускной системы наглядно подтверждают (рис. 7) результаты испытаний мотора "Ветерок-14". Применение настроенного выпуска улучшило технико-экономические показатели в диапазоне 3500-6000 об/мин.

Конструктивные решения системы настроенного выпуска могут быть различными. Один из вариантов для двухцилиндровых двигателей с рабочим объемом 250 и 350 куб.см. показан на рис. 8.

Зависимость индикаторного давления и удельного расхода топлива

Результаты испытаний Ветерка-14

1 - 510 мм; 2 - 450 мм; 3 - 400 мм; 4 - 350 мм.

Рис. 6. Зависимость индикаторного давления Pi и удельного расхода топлива gi от длины
выпускной системы.

1 - серийный дейдвуд; 2 - дейдвуд с настроенной системой выпуска

Рис. 7. Результаты испытаний "Ветерка-14": замеры мощности, крутящего момента и расхода топлива.

Выпускные газы отводятся через один изолированный канал квадратного сечения, причем на моторе с меньшей кубатурой проходное сечение канала уменьшено профилированной вставкой переменного сечения.

Настройка выпуска многоцилиндровых двигателей значительно сложнее, но зато и более эффективна. Приходится применять отдельные выпускные патрубки для каждого цилиндра, а такие системы получаются очень громоздкими и тяжелыми. В отдельных случаях удается настроить систему более простым способом. Например, на трехцилиндровом "Эвинруде" выпускной тракт выполнен в виде короткой расширяющейся трубы. Параметры этой трубы выбраны такими, что перед моментом закрытия выпускного окна одного из цилиндров и началом открытия выпускного окна другого давление в трубе повышается, благодаря чему производится доэарядка первого цилиндра.

Особенностью рассматриваемой системы подвесных лодочных моторов является устройство так называемого свободного выпуска. Для облегчения запуска и работы двигателя на холостом ходу выпуск отработавших газов производится не под воду, а в атмосферу. Выпуск под воду на таких режимах работы двигателя был бы затруднен, так как патрубок выпуска, расположенный под антикавитационной трубой, из стоянке и малом ходу лодки оказывается чрезмерно заглубленным, а большая часть системы выпуска - заполненной водой,создающей большое сопротивление выходу газов.

Система настроенного выпуска подвесного мотора

Рис. 8. Система настроенного
выпуска подвесного мотора
с рабочим объёмом 250-350 куб.см.

Проходное сечение в сеч. А-А - 447 кв.мм, Б-Б - 346 кв.мм и В-В - 660 кв.мм.

1 - основной канал; 2 - вставка.

Схема свободного выпуска подвесного мотора

Рис. 9. Схема свободного выпуска подвесного мотора.

1 - движение отработавших газов в системе основного выпуска; 2 - движение газов в системе свободного выпуска; 3 - слив охлаждающей воды.

Конструкция редуктора с выводом отработавших газов

Рис. 10. Конструкция редуктора с выводом отработавших газов через ступицу гребного винта.

Отработавшие газы, последовательно расширяясь в полостях и проходя через каналы системы свободного выпуска (рис. 9), теряют энергию, что приводит к снижению уровня шума от свободного выпуска. С этой же целью в системы основного и свободного выпуска выводится поток воды из системы охлаждения двигателя.

На всех отечественных лодочных моторах вывод газов в воду производится через наклонный канал, патрубок которого расположен в потоке воды, отбрасываемой винтом. Вследствние этого в зоне патрубка получается разрежение, способствующее отсасыванию продуктов сгорания из выпускной системы. Можно создать еще большее разрежение в выпускной системе, если выпуск газов выполнить через ступицу гребного винта (рис. 10). Выпуск через ступицу имеет и еще одно немаловажное достоинство: значительно снижается уровень шума. Впервые такое решение применила фирма "Меркюри", а сейчас уже многие зарубежные фирмы, изготовляющие подвесные моторы, последовали ее примеру, хотя выпуск через ступицу значительно усложняет конструкцию редуктора и приводит к увеличению диаметра ступицы (последнее обстоятельство существенно для моделей малой и средней мощности).

Е.И. Фишбейн, "Катера и Яхты" № 5(69) 1977г.

Facebook Twitter Google+ Pinterest

Boatportal.ru

logo